An inductive proof of Whitney's Broken Circuit Theorem

نویسنده

  • Klaus Dohmen
چکیده

We present a new proof of Whitney’s broken circuit theorem based on induction on the number of edges and the deletion-contraction formula.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Broken circuits in matroids-Dohmen's inductive proof

Dohmen [4] gives a simple inductive proof of Whitney’s famous broken circuits theorem. We generalise his inductive proof to the case of matroids.

متن کامل

An Abstraction of Whitney's Broken Circuit Theorem

We establish a broad generalization of Whitney’s broken circuit theorem on the chromatic polynomial of a graph to sums of the type ∑ A⊆S f(A) where S is a finite set and f is a mapping from the power set of S to an abelian group. We give applications to the domination polynomial and the subgraph component polynomial of a graph, the chromatic polynomial of a hypergraph, the characteristic polyno...

متن کامل

An efficient algorithm to find a Hamiltonian circuit in a 4-connected maximal planar graph

This paper describes an efficient algorithm to find a Hamiltonian circuit in an arbitrary 4-connected maximal planar graph. The algorithm is based on our simlplified version of Whitney's proof of his theorem: every 4-connected maximal planar graph has a Hamiltonian circuit.

متن کامل

The Basic Theorem and its Consequences

Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...

متن کامل

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2011